direct product, abelian, monomial, 2-elementary
Aliases: C24×C12, SmallGroup(192,1530)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24×C12 |
C1 — C24×C12 |
C1 — C24×C12 |
Generators and relations for C24×C12
G = < a,b,c,d,e | a2=b2=c2=d2=e12=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 1362, all normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C2×C4, C23, C12, C2×C6, C22×C4, C24, C2×C12, C22×C6, C23×C4, C25, C22×C12, C23×C6, C24×C4, C23×C12, C24×C6, C24×C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C24, C2×C12, C22×C6, C23×C4, C25, C22×C12, C23×C6, C24×C4, C23×C12, C24×C6, C24×C12
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 73)(10 74)(11 75)(12 76)(13 87)(14 88)(15 89)(16 90)(17 91)(18 92)(19 93)(20 94)(21 95)(22 96)(23 85)(24 86)(25 153)(26 154)(27 155)(28 156)(29 145)(30 146)(31 147)(32 148)(33 149)(34 150)(35 151)(36 152)(37 69)(38 70)(39 71)(40 72)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 163)(50 164)(51 165)(52 166)(53 167)(54 168)(55 157)(56 158)(57 159)(58 160)(59 161)(60 162)(97 190)(98 191)(99 192)(100 181)(101 182)(102 183)(103 184)(104 185)(105 186)(106 187)(107 188)(108 189)(109 125)(110 126)(111 127)(112 128)(113 129)(114 130)(115 131)(116 132)(117 121)(118 122)(119 123)(120 124)(133 174)(134 175)(135 176)(136 177)(137 178)(138 179)(139 180)(140 169)(141 170)(142 171)(143 172)(144 173)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 13)(7 14)(8 15)(9 16)(10 17)(11 18)(12 19)(25 69)(26 70)(27 71)(28 72)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 153)(38 154)(39 155)(40 156)(41 145)(42 146)(43 147)(44 148)(45 149)(46 150)(47 151)(48 152)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 109)(60 110)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 85)(81 86)(82 87)(83 88)(84 89)(97 174)(98 175)(99 176)(100 177)(101 178)(102 179)(103 180)(104 169)(105 170)(106 171)(107 172)(108 173)(121 157)(122 158)(123 159)(124 160)(125 161)(126 162)(127 163)(128 164)(129 165)(130 166)(131 167)(132 168)(133 190)(134 191)(135 192)(136 181)(137 182)(138 183)(139 184)(140 185)(141 186)(142 187)(143 188)(144 189)
(1 192)(2 181)(3 182)(4 183)(5 184)(6 185)(7 186)(8 187)(9 188)(10 189)(11 190)(12 191)(13 140)(14 141)(15 142)(16 143)(17 144)(18 133)(19 134)(20 135)(21 136)(22 137)(23 138)(24 139)(25 119)(26 120)(27 109)(28 110)(29 111)(30 112)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 159)(38 160)(39 161)(40 162)(41 163)(42 164)(43 165)(44 166)(45 167)(46 168)(47 157)(48 158)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(73 107)(74 108)(75 97)(76 98)(77 99)(78 100)(79 101)(80 102)(81 103)(82 104)(83 105)(84 106)(85 179)(86 180)(87 169)(88 170)(89 171)(90 172)(91 173)(92 174)(93 175)(94 176)(95 177)(96 178)(121 151)(122 152)(123 153)(124 154)(125 155)(126 156)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)
(1 148)(2 149)(3 150)(4 151)(5 152)(6 153)(7 154)(8 155)(9 156)(10 145)(11 146)(12 147)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 82)(26 83)(27 84)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(49 173)(50 174)(51 175)(52 176)(53 177)(54 178)(55 179)(56 180)(57 169)(58 170)(59 171)(60 172)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)(97 112)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)(105 120)(106 109)(107 110)(108 111)(121 183)(122 184)(123 185)(124 186)(125 187)(126 188)(127 189)(128 190)(129 191)(130 192)(131 181)(132 182)(133 164)(134 165)(135 166)(136 167)(137 168)(138 157)(139 158)(140 159)(141 160)(142 161)(143 162)(144 163)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
G:=sub<Sym(192)| (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,73)(10,74)(11,75)(12,76)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,95)(22,96)(23,85)(24,86)(25,153)(26,154)(27,155)(28,156)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,151)(36,152)(37,69)(38,70)(39,71)(40,72)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,163)(50,164)(51,165)(52,166)(53,167)(54,168)(55,157)(56,158)(57,159)(58,160)(59,161)(60,162)(97,190)(98,191)(99,192)(100,181)(101,182)(102,183)(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,121)(118,122)(119,123)(120,124)(133,174)(134,175)(135,176)(136,177)(137,178)(138,179)(139,180)(140,169)(141,170)(142,171)(143,172)(144,173), (1,20)(2,21)(3,22)(4,23)(5,24)(6,13)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(25,69)(26,70)(27,71)(28,72)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,153)(38,154)(39,155)(40,156)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,85)(81,86)(82,87)(83,88)(84,89)(97,174)(98,175)(99,176)(100,177)(101,178)(102,179)(103,180)(104,169)(105,170)(106,171)(107,172)(108,173)(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,163)(128,164)(129,165)(130,166)(131,167)(132,168)(133,190)(134,191)(135,192)(136,181)(137,182)(138,183)(139,184)(140,185)(141,186)(142,187)(143,188)(144,189), (1,192)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,140)(14,141)(15,142)(16,143)(17,144)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,139)(25,119)(26,120)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,157)(48,158)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,107)(74,108)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,179)(86,180)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150), (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,145)(11,146)(12,147)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,82)(26,83)(27,84)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(49,173)(50,174)(51,175)(52,176)(53,177)(54,178)(55,179)(56,180)(57,169)(58,170)(59,171)(60,172)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(106,109)(107,110)(108,111)(121,183)(122,184)(123,185)(124,186)(125,187)(126,188)(127,189)(128,190)(129,191)(130,192)(131,181)(132,182)(133,164)(134,165)(135,166)(136,167)(137,168)(138,157)(139,158)(140,159)(141,160)(142,161)(143,162)(144,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)>;
G:=Group( (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,73)(10,74)(11,75)(12,76)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,95)(22,96)(23,85)(24,86)(25,153)(26,154)(27,155)(28,156)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,151)(36,152)(37,69)(38,70)(39,71)(40,72)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,163)(50,164)(51,165)(52,166)(53,167)(54,168)(55,157)(56,158)(57,159)(58,160)(59,161)(60,162)(97,190)(98,191)(99,192)(100,181)(101,182)(102,183)(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,121)(118,122)(119,123)(120,124)(133,174)(134,175)(135,176)(136,177)(137,178)(138,179)(139,180)(140,169)(141,170)(142,171)(143,172)(144,173), (1,20)(2,21)(3,22)(4,23)(5,24)(6,13)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(25,69)(26,70)(27,71)(28,72)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,153)(38,154)(39,155)(40,156)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,85)(81,86)(82,87)(83,88)(84,89)(97,174)(98,175)(99,176)(100,177)(101,178)(102,179)(103,180)(104,169)(105,170)(106,171)(107,172)(108,173)(121,157)(122,158)(123,159)(124,160)(125,161)(126,162)(127,163)(128,164)(129,165)(130,166)(131,167)(132,168)(133,190)(134,191)(135,192)(136,181)(137,182)(138,183)(139,184)(140,185)(141,186)(142,187)(143,188)(144,189), (1,192)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,140)(14,141)(15,142)(16,143)(17,144)(18,133)(19,134)(20,135)(21,136)(22,137)(23,138)(24,139)(25,119)(26,120)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,157)(48,158)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,107)(74,108)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,179)(86,180)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150), (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,145)(11,146)(12,147)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,82)(26,83)(27,84)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(49,173)(50,174)(51,175)(52,176)(53,177)(54,178)(55,179)(56,180)(57,169)(58,170)(59,171)(60,172)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(106,109)(107,110)(108,111)(121,183)(122,184)(123,185)(124,186)(125,187)(126,188)(127,189)(128,190)(129,191)(130,192)(131,181)(132,182)(133,164)(134,165)(135,166)(136,167)(137,168)(138,157)(139,158)(140,159)(141,160)(142,161)(143,162)(144,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192) );
G=PermutationGroup([[(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,73),(10,74),(11,75),(12,76),(13,87),(14,88),(15,89),(16,90),(17,91),(18,92),(19,93),(20,94),(21,95),(22,96),(23,85),(24,86),(25,153),(26,154),(27,155),(28,156),(29,145),(30,146),(31,147),(32,148),(33,149),(34,150),(35,151),(36,152),(37,69),(38,70),(39,71),(40,72),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,163),(50,164),(51,165),(52,166),(53,167),(54,168),(55,157),(56,158),(57,159),(58,160),(59,161),(60,162),(97,190),(98,191),(99,192),(100,181),(101,182),(102,183),(103,184),(104,185),(105,186),(106,187),(107,188),(108,189),(109,125),(110,126),(111,127),(112,128),(113,129),(114,130),(115,131),(116,132),(117,121),(118,122),(119,123),(120,124),(133,174),(134,175),(135,176),(136,177),(137,178),(138,179),(139,180),(140,169),(141,170),(142,171),(143,172),(144,173)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,13),(7,14),(8,15),(9,16),(10,17),(11,18),(12,19),(25,69),(26,70),(27,71),(28,72),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,153),(38,154),(39,155),(40,156),(41,145),(42,146),(43,147),(44,148),(45,149),(46,150),(47,151),(48,152),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,109),(60,110),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,85),(81,86),(82,87),(83,88),(84,89),(97,174),(98,175),(99,176),(100,177),(101,178),(102,179),(103,180),(104,169),(105,170),(106,171),(107,172),(108,173),(121,157),(122,158),(123,159),(124,160),(125,161),(126,162),(127,163),(128,164),(129,165),(130,166),(131,167),(132,168),(133,190),(134,191),(135,192),(136,181),(137,182),(138,183),(139,184),(140,185),(141,186),(142,187),(143,188),(144,189)], [(1,192),(2,181),(3,182),(4,183),(5,184),(6,185),(7,186),(8,187),(9,188),(10,189),(11,190),(12,191),(13,140),(14,141),(15,142),(16,143),(17,144),(18,133),(19,134),(20,135),(21,136),(22,137),(23,138),(24,139),(25,119),(26,120),(27,109),(28,110),(29,111),(30,112),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,159),(38,160),(39,161),(40,162),(41,163),(42,164),(43,165),(44,166),(45,167),(46,168),(47,157),(48,158),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(73,107),(74,108),(75,97),(76,98),(77,99),(78,100),(79,101),(80,102),(81,103),(82,104),(83,105),(84,106),(85,179),(86,180),(87,169),(88,170),(89,171),(90,172),(91,173),(92,174),(93,175),(94,176),(95,177),(96,178),(121,151),(122,152),(123,153),(124,154),(125,155),(126,156),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150)], [(1,148),(2,149),(3,150),(4,151),(5,152),(6,153),(7,154),(8,155),(9,156),(10,145),(11,146),(12,147),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,82),(26,83),(27,84),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(49,173),(50,174),(51,175),(52,176),(53,177),(54,178),(55,179),(56,180),(57,169),(58,170),(59,171),(60,172),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90),(97,112),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119),(105,120),(106,109),(107,110),(108,111),(121,183),(122,184),(123,185),(124,186),(125,187),(126,188),(127,189),(128,190),(129,191),(130,192),(131,181),(132,182),(133,164),(134,165),(135,166),(136,167),(137,168),(138,157),(139,158),(140,159),(141,160),(142,161),(143,162),(144,163)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)]])
192 conjugacy classes
class | 1 | 2A | ··· | 2AE | 3A | 3B | 4A | ··· | 4AF | 6A | ··· | 6BJ | 12A | ··· | 12BL |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
192 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 |
kernel | C24×C12 | C23×C12 | C24×C6 | C24×C4 | C23×C6 | C23×C4 | C25 | C24 |
# reps | 1 | 30 | 1 | 2 | 32 | 60 | 2 | 64 |
Matrix representation of C24×C12 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 |
3 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12],[3,0,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12] >;
C24×C12 in GAP, Magma, Sage, TeX
C_2^4\times C_{12}
% in TeX
G:=Group("C2^4xC12");
// GroupNames label
G:=SmallGroup(192,1530);
// by ID
G=gap.SmallGroup(192,1530);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-2,672]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^12=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations